41 research outputs found

    Bearing Signal Separation of Commercial Helicopter Main Gearbox

    Get PDF
    Gears are significant component in a multiplicity of industrial applications such as machine tool and gearboxes. An unforeseen failure of gear may result in significant economic losses. Therefore this research propose fault detection improvement throught series of vibration signal processing techuiques. These techniques have been tested experimentally using vibration data collected from the transmission system of a CS-29 ‘Category A’ helicopter gearbox under different bearing damage severity of the second planetary stage. Results showed successful improvement of bearing fault detection

    A study on helicopter main gearbox planetary bearing fault diagnosis

    Get PDF
    The condition monitoring of helicopter main gearbox (MGB) is crucial for operation safety, flight airworthiness and maintenance scheduling. Currently, the helicopter health and usage monitoring system, HUMS, is installed on helicopters to monitor the health state of their transmission systems and predict remaining useful life of key helicopter components. However, recent helicopter accidents related to MGB failures indicate that HUMS is not sensitive and accurate enough to diagnose MGB planetary bearing defects. To contribute in improving the diagnostic capability of HUMS, diagnosis of a MGB planetary bearing with seeded defect was investigated in this study. A commercial SA330 MGB was adopted for the seeded defect tests. Two test cases are demonstrated in this paper: the MGB at 16,000 rpm input speed with 180 kW load and at 23,000 rpm input speed with 1760 kW load. Vibration data was recorded, and processed using signal processing techniques including self-adaptive noise cancellation (SANC), kurtogram and envelope analysis. Processing results indicate that the seeded planetary bearing defect was successfully detected in both test cases

    Helicopter gearbox bearing fault detection using separation techniques and envelope analysis

    Get PDF
    The main gearbox (MGB) is a crucial part of a helicopter. MGB bearings suffer intensively from stress and friction during flights hence concerns for their health condition and detecting potential defects become critical for the sake of operation safety and system reliability. In this study, bearing defects were seeded in the second epicyclic stage bearing of a commercial Class A helicopter MGB. Vibration and tachometer signals were recorded simultaneously for the purpose of fault diagnosis. The tests were carried out at different power and speed conditions for various seeded bearing defects. This paper presents a comparison of signal processing techniques employed to identify the presence of the defects masked by strong background noise generated from an operation helicopter MGB

    Helicopter Main Gearbox Bearing Defect Identification with Acoustic Emission Techniques

    Get PDF
    Helicopter transmission integrity is critical to the safety operation. Among all mechanical failures in helicopter transmission, the main gearbox (MGB) failures occupy approximately 16%. Great effort has been paid in early prevention and diagnosis of MGB failures. As a commonly mployed monitoring technology, vibration analysis suffers from strong background noise due to variable transmission paths from the bearing to the receiving externally mounted vibration sensor. The background noise can mask the signal signature of interest. This paper reports on an investigation to identify the presence of a bearing defect in a CS29 Category ‘A’ helicopter main gearbox with acoustic emission (AE) technologies. This investigation involved performing the tests for faultfree condition, minor bearing damage and major bearing damage conditions under different power levels. The bearing faults were seeded on one of the planet gears of the second epicyclic stage. To overcome the issue of low signal to noise ratio (SNR), AE sensor was directly attached on the dish of planet carrier. The AE signal was transferred wireless to avoid complex wiring inside MGB. The analysis results proved the feasibility of using AE ensor as in-situ bearing defect identification

    Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Helicopter gearboxes significantly differ from other transmission types and exhibit unique behaviors that reduce the effectiveness of traditional fault diagnostics methods. In addition, due to lack of redundancy, helicopter transmission failure can lead to catastrophic accidents. Bearing faults in helicopter gearboxes are difficult to discriminate due to the low signal to noise ratio (SNR) in the presence of gear vibration. In addition, the vibration response from the planet gear bearings must be transmitted via a time-varying path through the ring gear to externally mounted accelerometers, which cause yet further bearing vibration signal suppression. This research programme has resulted in the successful proof of concept of a broadband wireless transmission sensor that incorporates power scavenging whilst operating within a helicopter gearbox. In addition, this paper investigates the application of signal separation techniques in detection of bearing faults within the epicyclic module of a large helicopter (CS-29) main gearbox using vibration and Acoustic Emissions (AE). It compares their effectiveness for various operating conditions. Three signal processing techniques including an adaptive filter, spectral kurtosis and envelope analysis, were combined for this investigation. In addition, this research discusses the feasibility of using AE for helicopter gearbox monitoring

    Bearing signal separation enhancement with application to helicopter transmission system

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Bearing vibration signal separation is essential for fault detection of gearboxes, especially where the vibration is nonstationary, susceptible to background noise, and subjected to an arduous transmission path from the source to the receiver. This paper presents a methodology for improving fault detection via a series of vibration signal processing techniques, including signal separation, synchronous averaging (SA), spectral kurtosis (SK), and envelope analysis. These techniques have been tested on experimentally obtained vibration data acquired from the transmission system of a CS-29 Category A helicopter gearbox operating under different bearing damage conditions. Results showed successful enhancement of bearing fault detection on the second planetary stage of the gearbo
    corecore